

NOTICE D'UTILISATION

PPE réalisé par un groupe d'élèves du Lycée Borda à DAX Année 2007/2008

Inventaire

Contenu de l'emballage du PANXT 3.6

1/ Prototype NXT (Brique intelligente comprise)

Pour une nomenclature plus détaillée reportez-vous à la page « . »

2/ Batterie de la brique NXT (Ou 6 piles AA)

- 3/ Chargeur batterie (NXT)
- 4/ Câble USB (NXT)
- 5/ CD d'installation (LEGO MINDSTORMS Education NXT)
- 6/ Aiptek Pocket DV Z100 Pro (Batterie Incluse)
- 7/ Chargeur Batterie (Aiptek)
- 8/ Câble USB (Aiptek)
- 9/ CD de données (Logiciels, Modélisation...)

<u>N.B</u>: Vous devez disposer d'un ordinateur disposant d'au moins une entrée USB et ayant les configurations minimales requises par chacun des logiciels et applications.

Analyse fonctionnelle

« Bête à cornes »

vue qu'il le souhaite pour réaliser un panorama (360°).

• SADT (Analyse fonctionnelle descendante)

Engrenages/Transmission

La solution la plus simple aurait été de positionner le moteur 1 de telle manière que son axe de sortie soit vertical au sol. Ainsi, nous aurions juste eu à adapter une plate-forme mobile sur cette axe.

Mais, dans le but de compliquer la chose, nous avons positionné le moteur 1 avec son axe de sortie horizontal au sol. Il s'avère également que cette solution joue sur l'esthétique de notre prototype.

Elle donne alors naissance à un train d'engrenages que nous allons étudier ci-dessous.

Vue en perspective des roues qui compose l'engrenage

On peut s'apercevoir que pour transmettre le mouvement à la partie mobile, dont l'axe de rotation est vertical au sol, il nous a fallu intégrer une sorte d'engrenage conique.

Engrenages/Transmission

Calcul du rapport de réduction :

Représentation schématique et linéaire du train d'engrenages

$$\omega S/\omega E = (z1.z2.z3.z4)/(z2.z3.z4.z5) = z1/z5 = 36/56 = 9/14$$

Donc le rapport de réduction entre l'axe de sortie du moteur et l'axe de rotation de la partie mobile est de **9/14**.

Programmation sous Lego Mindstorms NXT®

1°/Elaboration du programme :

Après maintes essais pratiques nous avons sélectionné le Grafcet de fonctionnement suivant :

Avec -CI : -Appareil photo installé (fixé avec les élastiques) -Ensemble (prototype + appareil) stabilisé -Manivelle à l'horizontal*

-Et un angle de rotation de 90° pour l'axe de sortie du moteur 2, aussi bien à l'aller qu'au retour.

Capture d'écran du programme sous Lego Mindstorms NXT®

*Voir p.

Programmation sous Lego Mindstorms NXT®

2°/Modification du programme :

Ce programme admet 2 variables : Le nombre de prises de vue souhaité et l'angle de rotation balayé par l'axe de sortie du moteur.

Elles sont toutes deux liées entre elles par une 3^{ième} variable : l'angle de rotation de la partie mobile (et donc de l'objectif de l'appareil photo).

• Formules de liaison

Rappelons que le rapport de réduction est de 9/14.

Notons **X** le nombres de prises de vue, β l'angle de rotation de l'axe de sortie du moteur et α l'angle de rotation de l'objectif de capture.

L'utilisateur décide en premier lieu du nombre de prises de vue, puis calcule le reste :

 α = 360/(X-2) (soit X=(360/ α)+2, avec « +2 » qui correspond à deux clichés supplémentaires pris par sécurité)

 $\beta = \alpha.14/9$

• Changer les données dans le programme

-Ouvrir le programme pré-enregistré sur la brique NXT à l'aide du logiciel MINDSTORMS NXT®.

-Cliquer sur le bloc N°1 « déplacer », puis en bas de la fenêtre changer la « durée » de rotation en degré (β):

-Cliquer sur la flèche qui entoure le programme et de la même façon modifier le nombre « compter » correspondant au nombre de photos voulu (X) :

Boucle	Ontrôle :	Compter
C	Jusque :	Compter : 22
	Montrer :	Compteur

Guide des opérations

<u>1°/Capture des clichés :</u>

• Branchements et connectivités

-Connecter le câble A entre l'encoche A de la brique NXT et le moteur 1 (Horizontal).

-Connecter le câble B entre l'encoche B de la brique NXT et le moteur 2 (Vertical). Le positionner de telle manière qu'il puisse suivre la rotation sans la gêner.

• Installation de l'appareil photo

-Ouvrez l'appareil photo en laissant l'écran ouvert comme indiqué ci-contre...

-Vérifier que l'appareil photo soit en mode photo (mode initial de démarrage).

-Insérer l'appareil photo dans l'emplacement prévu à cet effet.

-Mettre 2 élastiques afin de maintenir l'appareil photo et de préserver sa position initiale. Voir ci-dessous...

Réglage du Prototype NXT

-S'assurer que la base du prototype repose sur un support horizontal et stable (minimisant ainsi les oscillations).

-Vérifier que la manivelle soit en position initiale horizontale, ci-dessous

*Après avoir effectué ces opérations, votre **PANXT 3.6** est prêt à l'utilisation.

Exemple d'installation opérationnelle.

• Mise en route

-Allumer la brique NXT. -Démarrer le programme pré-enregistré (emplacement : My_Files\Software_files\pano2)

-Contrôler le bon fonctionnement des opérations.

<u>NB</u>: Une fois les X prises de vue effectuées, le programme s'arrêtera automatiquement.

• Eteindre la brique après utilisation !

Guide des opérations

2°/Assemblage et Visionnage des clichés :

<u>Objectifs</u>: -Assembler les photos une à une avec autostitch® pour former un seul et unique fichier image.

-Visionner le panorama grâce à Pt-viewer-panorama®.

Pour une manipulation plus aisée, veuillez copier tous les clichés concernés de votre appareil photo vers un dossier sur votre **Ordinateur**, sur le **Bureau** par exemple.

• Lors d'une première étape, vous allez devoir assembler chaque photo les unes aux autres.

Pour cela commencez par ouvrir l'éxecutable « autostitch.exe » dans le dossier « Autostitch ».

Une fenêtre s'affiche. Cliquez sur « Edit », pour régler les options.

La fenêtre ci-dessous s'affiche. Vous pouvez notamment déterminer les dimensions du fichier Jpeg de sortie dans la partie « Output size ».

Width (pixels)	21266
Height (pixels)	2250
🖣 Scale (%)	50% 👻

Cliquez ensuite sur « File » puis « Open ». Sélectionnez les clichés pris par l'appareil numérique.

	Edit	Stitch	Help
:0	nen		1000000
E	vit	-	
-	~15		

Cette autre fenêtre apparaît. Patientez...

Rendering block 1 of 1

NB: Plus la résolution des clichés et la résolution demandée en sortie sont grandes, plus le processus mettra de temps à se réaliser.

Un aperçu s'affiche, et le fichier créé est automatiquement enregistré sous le nom de « pano.jpg » dans le répertoire contenant les clichés. L'étape 1 est close.

 Lors de cette deuxième étape, vous allez utiliser le fichier image (panorama) créé précédemment pour réaliser une vue panoramique.

Créez tout d'abord un dossier, qui servira à stocker les fichiers nécessaires à la visualisation pour la suite. Prenez par exemple « test1 » sur le Bureau.

Cliquez sur « pt-panorama.exe » dans le dossier « pt-viewerpanorama » pour lancer le programme.

chiers Essais Aide A propos de	
lobal Panorama Hot-spots Hot-sp	ots statiques
225 - 51	
Nom du panorar	jardn
Nom du panorar Dossier de trav	jardn C:\Documents and Settings\LES PPE C'EST GENIAL\Bureau\test1
Nom du panorar Dossier de trav Dossier "panorar	jardin C:\Documents and Settings\LES PPE C'EST GENIAL\Bureau\test1 C:\Documents and Settings\LES PPE C'EST GENIAL\Bureau\test1\panorama
Nom du panorar Dossier de trav Dossier "panoram (Type de panorama	jardn C:\Documents and Settings\LES PPE C'EST GENIAL\Bureau\lest1 C:\Documents and Settings\LES PPE C'EST GENIAL\Bureau\lest1\panorama

ichiers E	ssais <u>A</u>	ide A prop	ios de	
ilobal Pa	norama	Hot-spots	Hot-spots st	atiques
Panol	ami			
	Imag	e panoramiq	ue	
tilt	10	fn	50	
tiltmir	-90	fovmii	10	
tiltma [.]	90	fovma:	180	
autr	0.3			
nanmii	-180	nanma	180	

Allez ensuite dans l'onglet Panorama.

Cliquez sur « Image panoramique » et sélectionnez le fichier « pano.jpg » de tout à l'heure.

Cliquez ensuite sur « Essais », puis « Visualiser ».

Sélectionnez votre navigateur dans le dossier « Program files » (ex : internet explorer).

Naviguez ensuite sur la page web avec votre souris ou bien avec les flèches et les touches + et – de votre clavier numérique, pour faire défiler le paysage.

Vous pouvez désormais montrer votre travail à vos proches, il suffit de cliquer sur le fichier d'extension « htm » dans votre dossier « test1 » !

N'hésitez pas à vous servir des aides fournies dans les logiciels pour peaufiner les réglages.

Nomenclature Lego Mindstorms®

Nous avons principalement utilisé la boite de LEGO MINDSTORMS NXT® #9797. Seulement certaines solutions nécessitaient l'apport de nouvelles pièces, c'est pourquoi nous en avons récupéré dans d'autres boites.

Ci-dessous la nomenclature des pièces NXT utilisées pour notre projet. Celles non comprises dans la boite #9797 sont repérées en violet dans les quantités.

Quantité	Numéro de pièce	Image
1	53788	
2	53787	
1	48452cx1	
2	3648	
1	3650a	

1	x403	6
5	32523	
4+1	32316	00000
4	32524	0000000
3	120	000000000
1	32525	00000000000
2	41239	
2	32278	000000000000000000000000000000000000000
4	32140	
8+2	32526	00000
2	6629	Saaaaa Saaaaa
4+2	32009	

18+1	3749	
52	2780	
17	6558	
7	32054	
1	32136	
3	32062	
9	4519	
1	3705	
3	32073	
4+1	3706	
+1	44294	
2+2	3707	
1	3737	
12+4	4265c	
10+6	3713	
2	6538	
2	32034	
+8	32014	
7	32184	
7	6536	

1	42003	
4	4185	
4	70162	0
2	55981	
2	30648	
2	x90	
1	55804 « Câble A »	\sim
1	55806 « Câble B »	

Crédits/Répertoire

LOGICIELS/APPLICATIONS :

-Autostich (Assemblage panorama)

-Pt-Viewer-Panorama (Visionnage panorama)

-LEGO Mindstorms NXT (Edition programme)

-Paint Shop Pro X (Création graphique, retouche photo...)

-SolidWorks 2006 (Assemblage virtuel du prototype Lego)

DOCUMENTATION :

-MémoTech (Première et Terminale Série S) (Aide pour le Grafcet, les engrenages...)

-http://peeron.com/inv/sets/9797-1 (Inventaire de la boite #9797 en ligne)

-http://philohome.com/ (source d'inspiration)

-http://dativ.at/gigabot/index.html (source d'inspiration)

BALCERZAC Aubin, BAUDART Alexandre, SANDREZ Paul

Dates	Travail effectué	Difficultés rencontrées
28/O2/08	Etude du sujet, recherches sur Internet (logiciels, projets semblables)	Choix de l'appareil / boîte Lego® absente
05/02/08	Idem	Boîte Lego® absente
10/03/08	Etude théorique du système avec la caméra Lego	Synchronisation avec Visual Basic
11/03/08	Test de logiciels / Abandon de la caméra Lego au profit d'un appareil numérique	Trouver un logiciel de préférence gratuit et en français
17/03/08	Acquisition de la boîte Lego®/ Début de montage du prototype Lego Mindstorms®	
25/03/08	Montage de la partie fixe	Placement des engrenages
31/03/08	Montage de la partie mobile / Elaboration d'un programme sur Lego Mindstorms NXT®	Encombrement de l'appareil photo et stabilisation de la partie mobile.
08/04/08	Finalisation du prototype / Premiers tests pratiques	Fixation de l'appareil photo
14/04/08	Clôture du projet dans le cadre des 10(-1) séances	Fonctionnement aléatoire du prototype
23/04/08	Prise de vue panoramique complète réussie (en extérieur)	Fonctionnement amélioré mais encore incertain